Die Sinusfunktion y=a sin (bx)

Die Funktion y = a *sin (x)

Der Faktor a bewirkt eine Vervielfachung der Funktionswerte, wie wir sie schon von anderen Funktionen her kennen.
Sein Effekt auf den Graphen nennt man Streckung für a>1 und Stauchung für 0<a< 1.
Funktionswerte verkleinern / vergrößern sich, das Maximum/ Minimum liegt dann bei a und -a und nicht mehr bei 1 und -1.
Die „Lage der Nullstellen“ und die „Länge der kleinsten Periode“ beeinflusst der Koeffizient a nicht.
Nutzt man negative Werte für a, kommt es zur Spiegelung des Graphen an der x-Achse(Abszisse).

Die Amplitude – die Ausschlaghöhe – der Funktion wird hier beeinflusst.

Probiere hier aus, wie der Koeffizient a auf den Graphen wirkt!

Quelle: Christian Bauer , geogebra.org

► zur Desmos.com Anwendung.

Die Funktion y = sin (bx)

Der Faktor b führt bei bei der Funktion zur Veränderung der kleinsten Periode.
Normalerweise beträgt sie bei y=sin(x) genau 2pi .
Der Faktor b verändert diese Länge auf der x-Achse, auf der sich der Graph periodisch wiederholt.

Die Periodenlänge errechnet sich aus:

$$\frac {2* \pi}{b} $$

Das Intervall von Null bis zum Wert der kleinsten Periode sollte dann zur Zeichnung geviertelt werden, um
Maxima, Minimum und Nullstellen zu errechnen.

Untersuche den Einfluss von b auf den Graphen von y = sin (b*x)

Quelle: Christian Bauer, geogebra.org

zur Desmos.com Anwendung

Beide Faktoren in der Funktion y=f(x) = \( a \cdot sin(b \cdot x \) )

Zeichnen von Funktionen dieser Form:

  1. \( Notiere^{(1)} \) mit Hilfe von Faktor a die Werte \( y_{max} und y_{min} \)
  2. Berechne die Periodenlänge mit p = \( \frac{2 \pi}{b} \)
  3. Teile den Wert p durch 4 (Abschnitte der einzelnen Quadranten \( p_1 , p_2, p_3 und p_4 \) )
  4. Jeder Quadrant enthält am Anfang und Ende einen typischen Fixpunkt ( \( x_0 , y_{min} oder y_{max} \) )
    • Abschnitt \( p_1 \) Nullstelle bis \( y_{max} , \) harmonisch zeichnen
    • Abschnitt \( p_2 \) \( y_{max} , \) bis Nullstelle harmonisch zeichnen
    • Abschnitt \( p_3 , \) Nullstelle bis \( y_{min} , \) harmonisch zeichnen
    • Abschnitt \( p_4 \) \( y_{min} , \) bis Nullstelle harmonisch zeichnen

(1) Sollte a<0 sein, so tauschen \( y_{max} , \) und \( y_{min} , \) die Funktion

Beispiel: y=f(x) =3 sin (2x); a = 3; b = 2

  1. Notiere mit Hilfe von Faktor a=3  die Werte    \( y_{max}=3 \)  und \(  y_{min}=-3 \)
  2. Berechne die Periodenlänge mit p = \( \frac{2 \pi}{b} \) = \( \frac{2 \pi}{2} = \pi \)
  3. Teile den Wert p=\( \pi \)   durch 4 ( jeder Abschnitt ist also  \( p_{(1,2,3,4)}= \frac{\pi}{4} \)  lang )
  4. Jeder Quadrant enthält am Anfang und Ende einen typischen Fixpunkt ( \( x_0 , y_{min} \) oder \(  y_{max} \) )
    • Abschnitt \( p_1  \) von 0 bis \( \frac{\pi}{4} \)  ; Nullstelle \( x_0 \)=0 bis \( y_{max} , \) =3  harmonisch zeichnen
    • Abschnitt \( p_2  \) von \( \frac{\pi}{4} \)  bis 2 \( \frac{\pi}{4} \) =\( \frac{\pi}{2} \))   ; \( y_{max} =3, \)  bis Nullstelle \(x_0=0 \)harmonisch zeichnen
    • Abschnitt \( p_3  \) von \( \frac{\pi}{2} \)  bis  3 \( \frac{\pi}{4} \) =\( \frac{3 \cdot \pi}{4} \))  ;Nullstelle \( x_0 \)=0 bis \( y_{min} , \) = – 3  harmonisch zeichnen
    • Abschnitt \( p_4  \) von      \(  \frac{ 3 \cdot \pi}{4} \)  bis 4 \( \frac{\pi}{4} \)  =   \( \pi \) ;  \( y_{min} \) = – 3  bis Nullstelle \( x_0 \) = 0  harmonisch zeichnen

Eventuell sollten bei großen Werten für a oder b auch Wertetabellen zum Einsatz kommen, die das harmonische Zeichnen mit Zwischenwerten unterstützen.

Die Funktion y=f(x)=a sin (bx) + c (mit Physik – Fachsprache)

Loading

Der Einheitskreis

Zeichne einen Kreis in ein Koordinatensystem mit dem Radius 1 und dem Mittelpunkt im Ursprung des Systems.

Festlegung:

Dieser Kreis hat den Radius r=1.

Sein Umfang beträgt u= pi * d = 2pi

Der Umfang des halben Kreises beträgt somit pi.

Die Länge der Peripherielinie (b), die zu einem Winkel gehört, wird Bogenmaß (b) genannt.

Bezogen auf den Umfang des Kreises bilden sich Wertepaare (\( \alpha \) , b)

Winkel \( \alpha \) Bogenmaß b
0*pi=0
30°pi/6
60°pi/3
90°pi/2
180°pi
270°3pi/2
360°2pi

VIDEO Winkelmaß – Bogenmaß

Die Umrechnung Winkel – Bogenmaß

Mit Hilfe der unten stehenden Formel, die man auch in jedem guten Tafelwerk findet, kann man Winkelmaß in Bogenmaße umwandeln und umgekehrt.

$$b= \frac {\alpha}{360°} *2\pi $$

Winkel und Bogenmaß im Taschenrechner

Unser Taschenrechner rechnet in der Voreinstellung mit Winkeln im Vollkreis von 360° DEG (..von Degree)

Mit dem Bogenmaß kann unser Taschenrechner auch rechnen. Dazu stellt man im Setup auf RAD (…Radiant) um.

Damit ist es nun auch möglich, die Sinus-Funktion unabhängig von der Winkelangabe im Koordinatensystem aufzutragen. Man erstellt eine Wertetabelle für y = f(b) = sin(b) , wobei nur noch reelle Zahlen benötigt werden. Das b wird durch x ersetzt und wir
können wie bei Funktionen gewohnt schreiben:

$$ y = f(x) = sin (x) ; x\in R $$

Nun sind jedoch Werte der x-Achse wie 1 oder 2 oder 3 uninteressant, denn die Teile und Vielfachen von pi bestimmen das Aussehen und die Eigenschaften von y = sin (x)

[weiterarbeiten…]

Damit wird die sehr unübersichtliche Darstellung von Winkeln auf der x-Achse überflüssig!

VIDEO Sinus-Funktion im Koordinatensystem

Sehr schöne Animation zur Darstellung Winkel –> sin(Winkel)

https://www.matheretter.de/do/loadprog?id=115

Mit der Hypotenuse r=1 ergeben sich die Längen der Katheten als \( cos \alpha \) und \( sin \alpha \) .

Loading

Die Sinusfunktion y = sin (x)

Die Funktion y = sin (x) wird im Koordinatensystem auf der x-Achse mit reellen Zahlen dargestellt.
Dabei ergibt sich die Wertetabelle aus den Bogenmaßen (x= \( \alpha \cdot \frac{ \pi}{180°})\) am Einheitskreis und den Sinuswerten der Bogenmaße sin(x).

Der Taschenrechner muss für Berechnungen im Bogenmaß auf – RADient – RAD – umgestellt sein.

Für Winkelangaben in Grad(30°) wird die Einstellung DEG verwendet.

Weist man nun den typischen Werten 1;2;3;4; einer Wertetabelle ihre Sinuswerte zu, so entstehen Dezimalzahlen, mit vielen Stellen nach dem Komma, die sich nur ungenau im Koordinatensystem abbilden ließen und auch leider keine markanten Stellen des Graphen der Sinusfunktion darstellen.

TR Modus: RAD : sin(1)=0,84147098 oder sin(2) = 0,90929743 oder sin(3)=0,14112001 …

Die Wertetabelle mit den x Werten 1 bis 7 enthält leider nicht die wichtigen Punkte, um die Funktion genau einzeichnen zu können.

Eine Wertetabelle mit den Teilen und Vielfachen von pi als Argumente (x) ist da sinnvoller.


Sie enthält so die Nullstellen, Minima und Maxima des Graphen der Funktion, die alle an den Stellen der Vielfachen von pi liegen! Das harmonische Verbinden dieser Punkte der Wertetabelle ergibt dann -nach einigen Übungen – einen ziemlich genauen Graphen der Funktion!
Am Anfang sollte man sich jedoch zur Orientierung auch Zwischenwerte wie f(1) oder f(2) errechnen!

Die Mischung aus beiden Wertetabellen ermöglicht ein gutes Arbeiten!

Für das (exakte) Zeichnen der Funktion y = sin (x) benutzen wir die Kurven- Schablone!

Loading

1 6 7 8 9