Die quadratische Funktion y=x²

Die quadratische Funktion y=x²

Die Funktion y=x² besitzt einen achsensymmetrischen Graphen, der den Scheitelpunkt (0|0) besitzt. Die Nullstelle der Funktion liegt ebenfalls bei (0|0) im Koordinatenursprung.

Die Funktion fällt im Intervall (-∞ ; 0 ) und steigt im Intervall (0 ; ∞).

Die Wertetabelle:

x-3-2-10123
y=x²(-3)*(-3) = 9(-2)*(-2) = 4(-1)*(-1)=10*0= 01*1=12*2=43*3=9

Der Graph der Funktion im Intervall (-2,8 ; 2,8)

Bearbeite die Funktion bei www.desmos.com

Das Intervall (0;1) zeigt den nichtlinearen Verlauf der quadratischen Funktion y=x².
Hier wachsen die Argumente zuerst schneller an als die Funktionswerte. Dies kehrt sich jedoch alsbald um. Im Punkt (1|1) sind Argument und Funktionswert gleich groß. Oberhalb des Argumentes 1 nehmen dann die Funktionswerte rasant zu.

xquadrat_intervall0_1
quadratischeFKT_punkte01
quadratischeFKT_punkte01_steig
previous arrow
next arrow

Loading

Die quadratische Funktion y=ax²

Der Koeffizient(Faktor) a für zu einer Streckung oder Stauchung der Normalparabel der Funktion y=x². Ist der Faktor zudem noch negativ, so bedeutet dies die Spiegelung des Graphen an der x-Achse(Abzisse).

y=ax² mit a>1 führen zur Streckung des Graphen Beispiele hier sind y = 2x² oder y = 5,7x²

Die Normalparabel y = x² ist hier rot dargestellt.

y=ax² mit a<1 führen zur Stauchung des Graphen Beispiele hier sind y = 0,5x² oder y = 0,07x²

Die Normalparabel y = x² ist hier rot dargestellt.

Setzt man für a negative Werte ein, so entsteht ein Graph, der im 3. und 4. Quadranten verläuft und nach unten geöffnet ist.

Die rot gezeichnete Funktion heißt y = – x².

Klick in das untere Fenster um auf desmos.com mit dem REGLER für a die unterschiedlichen Effekte auf den Funktionsgraph von y= ax² auszuprobieren.

Loading

Streckung und Stauchung von Funktionsgraphen y = ax²

Streckung

Der Koeffizient a bewirkt bei a=2 eine Verdopplung der Funktionswerte.
Jeder y-Wert wird also doppelt so groß und damit doppelt so hoch eingetragen.

Diesen Effekt nennt man Streckung des Graphen.
Dieses Streckung findet man vor, wenn a > 1 ist.

Stauchung

Setzt man in die Funktion y = ax² für a Werte ein, die zwischen Null und 1 liegen ( 0<a<1 ), so beobachtet man eine Verkleinerung der Funktionswerte gegenüber den Funktionswerten der Funktion y = x²

$$ \textsf{Hier am Beispiel } y = \frac {1}{2}x² $$

Loading

1 2 3 9