Der Einheitskreis

Zeichne einen Kreis in ein Koordinatensystem mit dem Radius 1 und dem Mittelpunkt im Ursprung des Systems.

Festlegung:

Dieser Kreis hat den Radius r=1.

Sein Umfang beträgt u= pi * d = 2pi

Der Umfang des halben Kreises beträgt somit pi.

Die Länge der Peripherielinie (b), die zu einem Winkel gehört, wird Bogenmaß (b) genannt.

Bezogen auf den Umfang des Kreises bilden sich Wertepaare (\( \alpha \) , b)

Winkel \( \alpha \) Bogenmaß b
0*pi=0
30°pi/6
60°pi/3
90°pi/2
180°pi
270°3pi/2
360°2pi

VIDEO Winkelmaß – Bogenmaß

Die Umrechnung Winkel – Bogenmaß

Mit Hilfe der unten stehenden Formel, die man auch in jedem guten Tafelwerk findet, kann man Winkelmaß in Bogenmaße umwandeln und umgekehrt.

$$b= \frac {\alpha}{360°} *2\pi $$

Winkel und Bogenmaß im Taschenrechner

Unser Taschenrechner rechnet in der Voreinstellung mit Winkeln im Vollkreis von 360° DEG (..von Degree)

Mit dem Bogenmaß kann unser Taschenrechner auch rechnen. Dazu stellt man im Setup auf RAD (…Radiant) um.

Damit ist es nun auch möglich, die Sinus-Funktion unabhängig von der Winkelangabe im Koordinatensystem aufzutragen. Man erstellt eine Wertetabelle für y = f(b) = sin(b) , wobei nur noch reelle Zahlen benötigt werden. Das b wird durch x ersetzt und wir
können wie bei Funktionen gewohnt schreiben:

$$ y = f(x) = sin (x) ; x\in R $$

Nun sind jedoch Werte der x-Achse wie 1 oder 2 oder 3 uninteressant, denn die Teile und Vielfachen von pi bestimmen das Aussehen und die Eigenschaften von y = sin (x)

[weiterarbeiten…]

Damit wird die sehr unübersichtliche Darstellung von Winkeln auf der x-Achse überflüssig!

VIDEO Sinus-Funktion im Koordinatensystem

Sehr schöne Animation zur Darstellung Winkel –> sin(Winkel)

https://www.matheretter.de/do/loadprog?id=115

Mit der Hypotenuse r=1 ergeben sich die Längen der Katheten als \( cos \alpha \) und \( sin \alpha \) .

Loading

Die Scheitelpunktform der quadratischen Funktion

y = (x+d)² +e

Schau dir den Einfluss von d(blau) und e(grün) im folgenden Plotterfenster an.

Autor: Eckerts, geogebra.org

Stell für d = 2 ein und wähle für e = – 3. Lies den Scheitelpunkt ab und notiere ihn!
Verfahre mit einigen ganzzahligen Beispielen ebenso.

deS
2-1
-42
3-4
-12

Die Form y = (x+d)² + e heißt Scheitelpunktsform, da der Scheitelpunkt mit seinen Koordinaten -d und e schon in der Vorschrift enthalten ist..

Der Scheitelpunkt dieser Funktion liegt bei S(-d|e)
Der Graph ist immer eine Normalparabel.

Hier noch mal ein voreingestellter Plotter auf www.desmos.com

Loading

Die quadratische Funktion y=ax²

Der Koeffizient(Faktor) a für zu einer Streckung oder Stauchung der Normalparabel der Funktion y=x². Ist der Faktor zudem noch negativ, so bedeutet dies die Spiegelung des Graphen an der x-Achse(Abzisse).

y=ax² mit a>1 führen zur Streckung des Graphen Beispiele hier sind y = 2x² oder y = 5,7x²

Die Normalparabel y = x² ist hier rot dargestellt.

y=ax² mit a<1 führen zur Stauchung des Graphen Beispiele hier sind y = 0,5x² oder y = 0,07x²

Die Normalparabel y = x² ist hier rot dargestellt.

Setzt man für a negative Werte ein, so entsteht ein Graph, der im 3. und 4. Quadranten verläuft und nach unten geöffnet ist.

Die rot gezeichnete Funktion heißt y = – x².

Klick in das untere Fenster um auf desmos.com mit dem REGLER für a die unterschiedlichen Effekte auf den Funktionsgraph von y= ax² auszuprobieren.

Loading

Die quadratische Funktion y=x²

Die quadratische Funktion y=x²

Die Funktion y=x² besitzt einen achsensymmetrischen Graphen, der den Scheitelpunkt (0|0) besitzt. Die Nullstelle der Funktion liegt ebenfalls bei (0|0) im Koordinatenursprung.

Die Funktion fällt im Intervall (-∞ ; 0 ) und steigt im Intervall (0 ; ∞).

Die Wertetabelle:

x-3-2-10123
y=x²(-3)*(-3) = 9(-2)*(-2) = 4(-1)*(-1)=10*0= 01*1=12*2=43*3=9

Der Graph der Funktion im Intervall (-2,8 ; 2,8)

Bearbeite die Funktion bei www.desmos.com

Das Intervall (0;1) zeigt den nichtlinearen Verlauf der quadratischen Funktion y=x².
Hier wachsen die Argumente zuerst schneller an als die Funktionswerte. Dies kehrt sich jedoch alsbald um. Im Punkt (1|1) sind Argument und Funktionswert gleich groß. Oberhalb des Argumentes 1 nehmen dann die Funktionswerte rasant zu.

xquadrat_intervall0_1
quadratischeFKT_punkte01
quadratischeFKT_punkte01_steig
previous arrow
next arrow

Loading

1 133 134 135 136 137 145