Grundwissen – Oberschule Sachsen
Dieser Beitrag ist unvollständig und wird ständig bearbeitet und ergänzt.
Sollten Sie Ideen und Anregungen haben, freue ich mich sehr auf Ihre Nachricht!
Grundrechnen
► Die Zahlenbereiche
► Kopfrechnen , das 1×1 , Vorgänger und Nachfolger, Lesen großer Zahlen , Runden auf 100–er, 1000–er ..,
► Teilbarkeit, (Teiler, Teilbarkeitsregeln)
► Quadratzahlen ( und deren Wurzeln, 1 bis 20)
► schriftliches Rechnen (natürliche Zahlen, Dezimalzahlen, Potenzen)
► Exponentialschreibweise (scientific Notation) ,
► rationale / ganze Zahlen (Grundrechenarten und Vorrangregeln)
► Terme aufstellen und Termwerte(Funktionswerte) berechnen
Brüche, gebrochene Zahlen, Größen
► Grundrechnen mit Dezimalzahlen und gemeinen Brüchen ( echten und unechten) –> Add., Subtr. Mult., Div.
► Arten von Brüchen, Umwandeln von Bruchdarstellungen ( dezimal – gemischt – gemein, Prozentzahl )
► Erweitern und Kürzen, Ordnen von Brüchen (in allen Schreibweisen)
► Anteile von Größen ( in der Art von : „2 Drittel von 180m sind …“ )
Einheiten
► benachbarte Einheiten , „Das Schema„
► Umwandlungszahlen – in kleinere und größere Einheiten, „Wird die Einheit kleiner, wird die Zahl größer“
► Angaben und Größen umschreiben , Zeitspannen, ungleiche Einheiten vereinen
► Große und kleine Zahlen umschreiben ( scientific Notation)
Flächen
► geometrische Begriffe und Grundformen ( Benennung, Bewegungen –Spiegeln und Verschieben– auch im KS)
► Grundwissen zu Winkeln
► Dreiecke (Arten nach Winkeln und Seiten , Kenngrößen – Linien, Winkel– , IWS, Dreiecksungleichungen )
► Ähnlichkeit (zentrische Streckung an Flächen und Körpern, Anwendung: Strahlensätze)
► Pythagoras(Artikel) und erweiterte Trigonometrie (SINUS und KOSINUSSATZ mit Voraussetzungen) auch im KS
► Viereckarten, (Eigenschaften, Kennlinien und Kenngrößen an Vierecken, Winkel– und Seitenverhältnisse)
► Kreis und Kreisteile (Linien , Bogenmaß, Flächen, Schnittflächen)
► Vielecke und nicht geradlinig zusammengesetzte Flächen (Eigenschaften, typische Zerteilungen)
► Systematisierung Flächen, Strategie Flächenberechnung
Körper
► Darstellung von Körpern (Einzelansichten, Netz, Schrägbild, Seitenansichten, das „2–Tafel–Bild“ aka 2-Tafel-Projektion)
► Berechnung: Volumen(Volumen als \( V= A_G \cdot h \) , gerade und \( V= \frac{1}{3} \cdot A_G \cdot h \) für spitze Körper,)
► Berechnung: Oberfläche (immer mit Hilfsskizze Netz!) (auch die Vereinfachung von Oberflächenformeln zu Sonderformen) (Halbkörper und Schnitte)
► Masseberechnungen (auch Rückschlussrechnung: Masse -Volumen, Volumen- Masse)
► zusammengesetzte Körper , (Volumenaddition oder –subtraktion, Oberflächenänderung bei zus.ges. Kö.)
► Kennlinien an Körpern ( Trigonometrie, wichtige Linien und Winkel an und in Körpern)
Prozent und Zins
► Dreisatz, Anteile von Größen
► Prozentzahl als Bruch und Dezimalzahl (Umwandlungen, Darstellung)
► bequeme Prozentsätze (50%, 20%, 10%, 25%, 75%, 33,3% (Kopfrechnen)
► Grundaufgaben der Prozentrechnung (Erkennen von G,W,p ) , (auch: erhöhte sich „um“ … , erhöhte sich „auf“ …)
erhöhter und verminderter Grundwert (Rabatt, Skonto, Mehrwertsteuer)
► Diagramme lesen/auswerten , erstellen, kritisch betrachten (Regeln für gute Diagramme)
(Balken-, Linien-, Kreisdiagramm, Streifendiagramm(Prozentstreifen), weitere Arten,)
► Zinsrechnung (Kapital, Zins, Zinssatz, Monats- und Tageszins, Zinseszins, Kredit, Rückzahlung, Ratenzahlung)
Funktionen
► Zuordnungen ( z.B. Stückzahl \( \rightarrow \) Preis, Fahrstrecke \( \rightarrow \) Spritverbrauch,
► Proportionalitäten als Zuordnungen (direkt und indirekt)
► Das Koordinatensystem (4 Quadranten)
► Grundaufgaben zu allen Funktionen
(Wertetabelle(WT) auch mit TR , Wertepaare ergänzen, Zeichnen, Wertebereich u. Definitionsbereich benennen)
► lineare Funktionen
( Zeichnen , Nullstelle, WT–ergänzen, Schnittpunkte errechnen – Gleichungssystem , Parallelität erzeugen)
► quadratische Funktion ( Scheitelpunktform, Normalform, Scheitelpunkt, Graph zeichnen, Nullstellen, Schnittpunkt)
► quadratische Funktionen Unterarten- Parallelvergleich
► Potenzfunktionen \( y=x^n \) ,
► Exponentialfunktion \( y = c \cdot a^x \)
► Winkelfunktionen y = a\( \cdot \) sin bx , y=sin x ,(Eigenschaften), y=a sin bx
► Parallelvergleich aller Arten von Funktionen der Oberschule
Terme und Gleichungen
► Zusammenfassen, Ausklammern, Ausmultiplizieren von a(b+c)…auch Binome (x+y)² oder (a+b)(c+d)
► Lösen von linearen Gleichungen ( Begriff: Gleichung, Lösen linearer Gleichungen ,
Lösen von linearen Bruchgleichung, Gleichungen mit \( x^n\) – Potenzen, auch aus Texten)
► Lösen linearer Gleichungssysteme
► Lösen von quadratischen Gleichungen (Schema)(Umwandlung in Normalform, Lösungsformel, auch aus Texten)
► Formeln
Aufstellen von Formeln, Arbeiten mit Formeln (Einsetzen von Größen, resultierende Einheit bestimmen),
Umstellen ( auch Kosinus – Satz)
► Lösen von Gleichungen (Strategie, mit Übungen)
► Lösen von Gleichungen – Systematisierung (alle Arten)
Dokument „Grundwissen“ herunterladen:
Sonderinhalte bei eduki.de kaufen
Zusammenfassung – Gleichungen und Terme – bei eduki.de kaufen
Zusammenfassung – Prozent und Zins – bei eduki.de kaufen
Zusammenfassung – Flächen – bei eduki.de kaufen
Zusammenfassung – Körper – bei eduki.de kaufen
Zusammenfassung – Stochastik – bei eduki.de kaufen