Senkrechte Herausforderung (Kreativ)

Versuche die beiden Geraden zueinander senkrecht zu stellen,ohne dass dabei Koordinaten doppelt vorkommen.
Autor: Tim Brzezinski,geogebra.org
![]()
Mathe muss man üben!

Versuche die beiden Geraden zueinander senkrecht zu stellen,ohne dass dabei Koordinaten doppelt vorkommen.
Autor: Tim Brzezinski,geogebra.org
![]()

Denk Dir den Abstand zwischen A und B als Hypotenuse in einem rechtwinkligen Dreieck.
$$\overline{AB}=\sqrt{(x_{Abstand})² + (y_{Abstand})²}$$
Ergänze dazu in Gedanken den dritten Punkt.
Notiere die Längen der Katheten. Sie ergeben sich aus den Koordinaten der Punkte A und B.
Und nun im 4-Quadranten- Koordinatensystem…
Klick „Show Hints“ für den Anfang.
Dort kannst Du auch das Ergebnis kontrollieren.
Autor: Tim Brzezinski, geogebra.org
![]()

Die Raumdiagonale ist das Ergebnis der Wurzel der Summe der drei Seitenquadrate.
$$\overline{AB} =\sqrt{a²+b²+c²} $$
Autor: Tim Brzezinski, geogebra.org
![]()

Arbeite mit den Formeln zur Berechnung von Seiten und Winkeln an rechtwinkligen Dreiecken.
Klick ins Anwortfeld und ergänze dort deine Rechnung mit dem eingeblendeten wissenschaftlichen Taschenrechner(Symbol links unten- bei Klick ins Eingabefeld).
Hinweis:
„tan(A)“ bedeutet hier „Tangens von Alpha“
Autor: Tim Brzezinski, geogebra.org
Man kann hier Terme auch nur aus Textbefehlen zusammensetzen:
/ erzeugt hier einen „gemeinen“ Bruchstrich
„sqrt“ erzeugt nach Hinzufügen eines Leerzeichens ein Wurzelsymbol
sqrt 7² + 3² erzeugt hier \( \sqrt{7^2 + 3^2} \)
(…ist also die Berechnung einer nicht gegebenen Hypotenuse mit den Katheten 3 und 7)
![]()