Vierecke

Geradlinig begrenzte Flächen mit vier Eckpunkten nennt man Viereck. Liegen die Diagonalen innerhalb des Vierecks, so nennt man das Viereck konvex. Konkave Vierecke enthalten einen überstumpfen Winkel.

Die Benennung von Vierecken und anderen Vielecken erfolgt unten links beginnend mit dem Eckpunkt „A“ gegen den Uhrzeigersinn folgend. Der Winkel Alpha hat seinen Scheitelpunkt bei A. Die Seite „a“ verbindet die Eckpunkte A und B.

In allen Vierecken gilt:

Die Innenwinkelsumme im Viereck beträgt 360°, da sich alle Vierecke in je 2 Dreiecke mit der Innenwinkelsumme 180° zerlegen lassen.

Der Umfang der Vierecke ist u= a+b+c+d.

Die Fläche A der Vierecke ist gleich der Summe der beiden Teildreiecksflächen.

Die von A ausgehende Diagonale heißt e. Die vom Eckpunkt B ausgehende Diagonale heißt f.

Will man ein Viereck konstruieren, so benötigt man mindestens 5 Größen (Seiten oder Winkel) von denen mindestens 2 Seiten sein müssen. Bei besonderen Vierecken lassen sich meist Seitenlängen und Winkelgrößen voneinander ableiten, so dass sich die notwendige Anzahl der gegebenen Stücke verringert.

weiter zur Hierarchie der Vierecke

Loading

Der Sinussatz

Erklärung im Selbstversuch…

  1. Zeichne ein beliebiges Dreieck und miss seine Seiten und die 3 Innenwinkel.
  2. Bilde nun jeweils die Quotienten $$\frac{Seite} {sin(zugehöriger Winkel)} $$
  3. Du solltest feststellen, dass die Quotienten gleich groß sind!
  4. Damit kann man diese Quotienten gleichsetzen.
  5. Es entstehen 3 Verhältnisgleichungen!
  6. Die 3 Sinussätze:

\( \frac{a}{sin \alpha} =\frac{b}{sin \beta} oder \frac{a}{sin \alpha} =\frac{c}{sin \gamma} oder \frac{b}{sin \beta} =\frac{c}{sin \gamma} \)

Es gilt:

\( \frac{a}{sin \alpha} =\frac{b}{sin \beta} oder \frac{a}{sin \alpha} =\frac{c}{sin \gamma} oder \frac{b}{sin \beta} =\frac{c}{sin \gamma} \)

Mit 3 gegebenen Werten zu einem Dreieck, von denen 2 Werte ein Seite-Winkel-Paar darstellen, kann man eine 4. Größe errechnen und danach die restlichen beiden Größen des Dreiecks ermitteln!

Experiment zum Sinus-Satz (Variante 2)

Tipp: Erarbeite Dir ein Beispiel einer „Seitenberechnung“ und eine Beispiel für eine „Winkelberechnung“!

Herleitung:

Im allgemeinen Dreieck gelten für die einbeschriebene Höhe auf Seite c (hc) die folgenden Gleichungen:

\( sin \alpha = \frac {GK}{H} = \frac {h_c}{b} \) und \( sin \beta = \frac {GK}{H} = \frac {h_c}{a} \)

Also gelten auch die umgestellten Gleichungen:

\( h_c = b \cdot sin \alpha \) und \( h_c = a \cdot sin \beta \)

Und damit gilt :

\( b \cdot sin \alpha = a \cdot sin \beta~~ \vert:sin \alpha ~~ \vert : sin \beta \)

Somit auch:

\( \frac {b} {sin \beta} = \frac {a}{ sin \alpha} \)

Wendet man das Verfahren auf die Höhe auf Seite b oder a an, gilt allgemein auch:

\( \frac {b} {sin \beta} = \frac {a}{ sin \beta} = \frac {c}{ sin \gamma}\) , der „SINUS-SATZ“ genannt.

Mit 3 gegebenen Werten zu einem Dreieck, von denen 2 Werte ein Seite-Winkel-Paar darstellen, kann man eine 4. Größe errechnen und danach die restlichen beiden Größen des Dreiecks ermitteln!

Beispielrechnung:

Loading

1 24 25 26 27 28 29