Die Mittelwerte – statistische Kenngrößen

Kenngrößen, wie die Spannweite, das Maximum, das Minimum oder auch den Mittelwert (Durchschnitt) benutzt man um grundlegende Aussagen über eine Datenreihe zu machen.

Wie aber lassen sich Aussagen über die verschiedenen Arten von Datenreihen machen?

Reihe 1: Hamburg, Berlin, München, Hamburg, München, Berlin, Berlin, Hamburg
Reihe 2: gut, geht so, gut, sehr gut, gut, gut, sehr gut
Reihe 3: 3, 5, 6, 3, 8, 7, 56, 4, 3

Zentralwert / Median xmed. 

    ist der mittlere Wert einer sortierten  (geordneten) Reihe!

Sollte die Reihe eine gerade Anzahl von Gliedern also keine Mitte haben, so wird das arithmetische Mittel aus den beiden mittleren Gliedern dieser geordneten Reihe gebildet!

► der Zentralwert ist robust gegen Ausreißer

►   der Zentralwert ist nützlich bei ordinal (Wertungen : gut, sehr gut … ) skalierten Reihen

Datenreihe: 15, 4, 9, 11, 2, 7, 9, 10, 5 Die Datenreihe enthält 9 Elemente(Daten).
Sie ist numerisch skaliert.(…enthält Zahlen)
Ordnen der Daten 2, 4, 5, 7,9,9,10,11,15 Kommafreie Zahlen können durch Kommata getrennt
werden, sonst hilft hier das Semikolon(;)
Mitte der Datenreihe finden 2, 4, 5, 7,9,9,10,11,15







Datenzahl 9

Mitte finden:

(9+1) : 2=5

5. Wert ist Zentralwert!
Bei übersichtlichen Datenreihen wird die Mitte abgezählt,
ansonsten gilt die Regel:

Datenzahl gerade :
►Datenzahl geteilt durch 2,
Dieses Element und sein Folgewert sind die Mitte und der
Zentralwert muss als arithmetische Mittel der beiden Werte gebildet werden!

Datenzahl ungerade:
► (Datenzahl +1 ) geteilt durch 2
Dieses Element ist die Mitte und damit der Zentralwert!

Hier:
9 Daten: ungerade also … 9 Daten plus 1 = 10
10 geteilt durch 2 ergibt 5

die Mitte bildet also 5. Wert
Zentralwert ermitteln5. Wert der geordneten Reihe 9

Der Durchschnitt oder das arithmetisches Mittel xarith.  

      Summe aller Werte der Reihe dividiert durch die Anzahl der Reihenglieder!

Addiere alle Zahlen(Daten) der Reihe und teile diese Summe dann durch die Anzahl der addierten Zahlen(Daten)!

►    das arithmetische Mittel ist anfällig gegen Ausreißer(sehr große oder kleine Abweichler)

►    das arithmetische Mittel ist sehr nützlich bei metrisch (zahlenorientiert) skalierten Reihen

Datenreihe 2, 8, 14, 5, 7, 11

Datenreihe enthält 6 Zahlen.
Zähle die Werte der Datenreihe

Die Datenreihe muss nicht geordnet werden!
Werte der
Datenreihe addieren
2+8+14+5+7+11=47
Summiere alle Werte der Datenreihe
Mittelwert finden47 : 6 = 7,83

Das arithmetische Mittel beträgt 7,83.

Berechne den Quotienten:

\( \frac{Summe der Daten}{Anzahl der Daten} \)

Modalwert(Modus) xmod         

     Wert mit der größten Häufigkeit in einer Reihe!

Gibt es mehrere Merkmalsausprägungen mit der gleichen maximalen Häufigkeit, so existiert kein Modalwert.
Dieser Mittelwert beschreibt auch Reihen, in denen keine Berechnung im eigentlichen Sinne möglich ist!
(Worturteile, wie  Lieblingsfarben, …)

► der Modalwert ist für nominal( Hamburg, Berlin …)  oder ordinal (s.o.) skalierte Reihen geeignet

Datenreiherot, blau, gelb, gelb, rot, blau, rot, blau, gelb, gelb, rot, blau, schwarz, blau, gelb, rot, rot Die Datenreihe muss
nicht geordnet werden.

Sie wird ausgezählt …
Notiere die verschiedenen
Werte der Reihe

rot
gelb
blau
schwarz

Verschaffe dir einen Überblick
über die enthaltenen Werte.
Zähle die Häufigkeiten
——————————-
rot: 6mal
gelb: 6 mal
blau: 5 mal
schwarz: 1 mal
——————————–


Zähle die Häufigkeit jedes einzelnen
der verschiedenen enthaltenen Werte.
Modalwert benennenRot und Gelb sind Modalwert der Reihe Nenne die Werte mit der höchsten Häufigkeit
(Es können auch mehrere Werte der Modalwert der Reihe sein!)

Arbeitsblatt mit Beispielen (ungelöst) tzu diesen Kenngrößen:

Videos zur Erklärung dieser statistischen Kenngrößen:

Loading

Statistik – Mittelwerte

Hier sieht man, wie sich eine Veränderung von Daten dieser Stichprobe in den Mittelwerten widerspiegelt.
Erhöht man zum Beispiel die „4 großen Werte“, so bleibt der Median davon unberührt, der Durchschnitt hingegen reagiert.


Autor:
Mira TocknerNeil, geogebra.org

Loading

1 2 3